Skip to content

API Schemas Architecture & Design

Comprehensive guide to Pydantic schema design patterns, validation strategies, and architectural decisions for Dashtam's API data contracts.

Overview

Schemas in Dashtam are Pydantic models that define the structure, validation rules, and documentation for data flowing through our API endpoints. They serve as the contract between our API and its clients.

Key Roles

  1. Request Validation - Validate incoming data from clients
  2. Response Serialization - Structure outgoing data to clients
  3. Documentation Generation - Automatically generate OpenAPI/Swagger docs
  4. Type Safety - Provide IDE autocomplete and static type checking
  5. Data Transformation - Convert between API formats and internal models

Context

Dashtam's API schemas operate within a FastAPI-based architecture, serving as the data contract layer between clients and backend services.

Operating Environment:

  • Framework: FastAPI with Pydantic v2 for data validation
  • API Consumers: Web frontend, mobile apps, potential third-party integrations
  • Data Flow: JSON over HTTPS for all client-server communication
  • Validation Layer: Request validation at API boundary, before business logic
  • Documentation: Auto-generated OpenAPI (Swagger) specifications

System Constraints:

  • Type Safety Required: Full type hints for IDE support and static analysis
  • Performance: Sub-millisecond validation overhead for typical requests
  • Maintainability: Schemas must be reusable across multiple endpoints
  • Versioning: Support for API version evolution without breaking clients
  • Standards Compliance: REST API best practices and OpenAPI 3.0 specification

Key Requirements:

  1. Separation of Concerns: Schemas separate from business logic and database models
  2. Comprehensive Validation: Catch invalid data at API boundary
  3. Self-Documenting: Schemas generate complete API documentation
  4. Developer Experience: Clear error messages and IDE autocomplete
  5. Security: Never expose sensitive internal data in responses

Architecture Goals

  1. Data Validation - Ensure all incoming data meets requirements before reaching business logic
  2. Type Safety - Enable compile-time type checking and IDE autocomplete for all data structures
  3. API Documentation - Auto-generate comprehensive OpenAPI documentation from schema definitions
  4. Separation of Concerns - Decouple data structure definitions from business logic and database models
  5. Reusability - Single source of truth for data structures used across multiple endpoints
  6. Security by Design - Prevent exposure of sensitive data through strict response schema control
  7. Developer Experience - Provide clear validation errors and examples for API consumers
  8. Maintainability - Centralized schema management for easier updates and versioning

Design Decisions

What Are Schemas?

Pydantic Models

Schemas are Python classes that inherit from Pydantic's BaseModel:

from pydantic import BaseModel, EmailStr, Field

class LoginRequest(BaseModel):
    """Request schema for user login."""

    email: EmailStr = Field(..., description="User's email address")
    password: str = Field(..., description="User's password", min_length=1)

Key Components

  1. Type Annotations - Define field types (str, int, EmailStr, etc.)
  2. Field Constraints - Validation rules (min_length, max_length, etc.)
  3. Descriptions - Human-readable field documentation
  4. Examples - Sample data for API documentation
  5. Validators - Custom validation logic

Data Flow

flowchart TD
    A[Client Request JSON] --> B[FastAPI receives request]
    B --> C[Pydantic Schema validates & parses]
    C --> D[Endpoint handler business logic]
    D --> E[Pydantic Schema serializes response]
    E --> F[FastAPI sends response JSON]
    F --> G[Client receives validated data]

    style A fill:#e1f5ff
    style C fill:#fff3cd
    style D fill:#d4edda
    style E fill:#fff3cd
    style G fill:#e1f5ff

Why Separate Schemas?

Historical Context:

Before (Inline Approach):

# src/api/v1/providers.py
class ProviderTypeInfo(BaseModel):
    key: str
    name: str
    # ... mixed with endpoint logic

@router.get("/available")
async def get_providers() -> List[ProviderTypeInfo]:
    # ...

Problems:

  • ❌ Tight coupling between API and schemas
  • ❌ Cannot reuse schemas across modules
  • ❌ Harder to test schemas in isolation
  • ❌ Large API files become unwieldy
  • ❌ Difficult to maintain consistency

After (Separated Approach):

# src/schemas/provider.py
class ProviderTypeInfo(BaseModel):
    key: str
    name: str
    # ... comprehensive documentation

# src/api/v1/providers.py
from src.schemas.provider import ProviderTypeInfo

@router.get("/available")
async def get_providers() -> List[ProviderTypeInfo]:
    # Clean, focused endpoint logic

Benefits:

  • ✅ Single source of truth for data structures
  • ✅ Reusable across multiple endpoints
  • ✅ Testable independently
  • ✅ Clear separation of concerns
  • ✅ Easier to maintain and evolve

Architectural Principles:

  1. Separation of Concerns - Schemas handle data structure, endpoints handle logic
  2. DRY (Don't Repeat Yourself) - One schema definition, used everywhere
  3. Single Responsibility - Each schema has one job
  4. Open/Closed Principle - Easy to extend without modifying existing code
  5. Interface Segregation - Specific schemas for specific purposes

Components

Directory Structure

src/schemas/
├── __init__.py          # Package initialization & documentation
├── common.py            # Shared/utility schemas
├── auth.py              # Authentication & user management
├── provider.py          # Provider management
└── [future-modules]     # Accounts, transactions, etc.

Module Organization

common.py

Purpose: Schemas used across multiple domains

"""Common schemas shared across API modules."""

class MessageResponse(BaseModel):
    """Generic success/status message."""
    message: str
    detail: Optional[str] = None

class PaginationParams(BaseModel):
    """Standard pagination parameters."""
    page: int = Field(default=1, ge=1)
    page_size: int = Field(default=20, ge=1, le=100)

When to use:

  • Generic responses (success, error messages)
  • Pagination, filtering, sorting
  • Common enums and constants
  • Utility types used everywhere

auth.py

Purpose: Authentication and user management schemas

"""Authentication schemas for JWT-based auth."""

class RegisterRequest(BaseModel):
    """User registration input."""
    email: EmailStr
    password: str
    name: str

class LoginResponse(BaseModel):
    """Login success with tokens and user info."""
    access_token: str
    refresh_token: str
    token_type: str = "bearer"
    user: UserResponse

When to use:

  • User registration, login, logout
  • Token management (refresh, revoke)
  • Password reset flows
  • Email verification
  • Profile management

provider.py

Purpose: Financial provider management schemas

"""Provider management schemas."""

class ProviderTypeInfo(BaseModel):
    """Available provider type metadata."""
    key: str
    name: str
    is_configured: bool

class CreateProviderRequest(BaseModel):
    """Create new provider connection."""
    provider_key: str
    alias: str

When to use:

  • Provider CRUD operations
  • OAuth connection flows
  • Provider status and metadata
  • Token refresh operations

Import Patterns

# In API endpoints
from src.schemas.auth import LoginRequest, LoginResponse
from src.schemas.provider import ProviderTypeInfo

@router.post("/login", response_model=LoginResponse)
async def login(request: LoginRequest):
    # ...

Package Import (Alternative)

# For multiple schemas
from src.schemas import auth, provider

@router.post("/login", response_model=auth.LoginResponse)
async def login(request: auth.LoginRequest):
    # ...

Implementation Details

Schema Types

1. Request Schemas

Purpose: Validate incoming data from clients

Naming Convention: *Request

Example:

class RegisterRequest(BaseModel):
    """Request to register a new user account.

    Validates email format, password strength, and required fields.
    """

    email: EmailStr = Field(..., description="User's email address")
    password: str = Field(
        ...,
        min_length=8,
        max_length=128,
        description="Password (8+ chars, mixed case, digit, special)"
    )
    name: str = Field(..., min_length=1, max_length=100)

Features:

  • Required fields marked with ...
  • Optional fields have defaults
  • Validation constraints (min_length, max_length, etc.)
  • Type coercion (string → EmailStr)
  • Custom validators for complex logic

2. Response Schemas

Purpose: Structure and document outgoing data

Naming Convention: *Response

Example:

class UserResponse(BaseModel):
    """User profile information returned by API.

    Never includes sensitive data like password hashes or tokens.
    """

    id: UUID
    email: str
    name: Optional[str]
    email_verified: bool
    is_active: bool
    created_at: datetime
    last_login_at: Optional[datetime]

    model_config = {
        "json_schema_extra": {
            "example": {
                "id": "123e4567-e89b-12d3-a456-426614174000",
                "email": "john@example.com",
                "name": "John Doe",
                "email_verified": True,
                "is_active": True,
                "created_at": "2025-10-04T20:00:00Z",
                "last_login_at": "2025-10-04T20:30:00Z"
            }
        }
    }

Features:

  • Read-only data (ID, timestamps)
  • Computed fields excluded
  • Example data for documentation
  • Consistent date formatting
  • Nested schemas supported

3. Shared/Common Schemas

Purpose: Reusable components across domains

Example:

class MessageResponse(BaseModel):
    """Generic message for simple operations.

    Used when no complex data needs to be returned,
    just a success/status message.
    """

    message: str = Field(..., min_length=1)
    detail: Optional[str] = None

Use Cases:

  • Success messages ("Registration successful")
  • Status updates ("Email sent")
  • Simple confirmations ("Provider disconnected")

4. Nested Schemas

Purpose: Complex data structures

Example:

class LoginResponse(BaseModel):
    """Login response with tokens and user profile."""

    access_token: str
    refresh_token: str
    token_type: str = "bearer"
    expires_in: int = 1800
    user: UserResponse  # Nested schema

Benefits:

  • Structured, hierarchical data
  • Reusable nested components
  • Clear data relationships
  • Better OpenAPI documentation

Design Patterns

Pattern 1: Request-Response Pair

When: Endpoint has specific input/output structure

# Registration flow
class RegisterRequest(BaseModel):
    email: EmailStr
    password: str
    name: str

class RegisterResponse(BaseModel):  # or MessageResponse
    message: str
    # Could include user details if needed

Pattern 2: Shared Response Type

When: Multiple endpoints return same structure

# Multiple endpoints return user data
class UserResponse(BaseModel):
    id: UUID
    email: str
    # ...

# Used by multiple endpoints
@router.get("/me", response_model=UserResponse)
@router.patch("/me", response_model=UserResponse)

Pattern 3: Inheritance for Variations

When: Schemas share common fields

class BaseTokenResponse(BaseModel):
    access_token: str
    token_type: str = "bearer"
    expires_in: int

class LoginResponse(BaseTokenResponse):
    refresh_token: str
    user: UserResponse

class RefreshResponse(BaseTokenResponse):
    refresh_token: str
    # No user data on refresh

Pattern 4: Optional Update Schema

When: PATCH endpoints allow partial updates

class UpdateUserRequest(BaseModel):
    """All fields optional for partial updates."""

    name: Optional[str] = None
    email: Optional[EmailStr] = None

    @field_validator("name")
    @classmethod
    def validate_name(cls, v: Optional[str]) -> Optional[str]:
        if v is not None and not v.strip():
            raise ValueError("Name cannot be empty")
        return v.strip() if v else v

Pattern 5: Enum for Constants

When: Field has fixed set of values

from enum import Enum

class UserRole(str, Enum):
    """User role types."""
    ADMIN = "admin"
    USER = "user"
    READONLY = "readonly"

class UserResponse(BaseModel):
    id: UUID
    role: UserRole  # Validated against enum

Validation & Type Safety

Built-in Validators

from pydantic import (
    EmailStr,      # Valid email format
    HttpUrl,       # Valid URL
    UUID4,         # Valid UUID v4
    constr,        # Constrained string
    conint,        # Constrained integer
    Field,         # Field metadata
)

class ExampleSchema(BaseModel):
    # Email validation
    email: EmailStr

    # String constraints
    name: str = Field(min_length=1, max_length=100)

    # Integer constraints
    age: int = Field(ge=0, le=150)  # ge = greater/equal, le = less/equal

    # URL validation
    website: HttpUrl

    # UUID validation
    user_id: UUID4

Custom Validators

from pydantic import field_validator

class PasswordResetConfirm(BaseModel):
    token: str
    new_password: str

    @field_validator("new_password")
    @classmethod
    def validate_password_strength(cls, v: str) -> str:
        """Ensure password meets complexity requirements."""
        if len(v) < 8:
            raise ValueError("Password must be at least 8 characters")
        if not any(c.isupper() for c in v):
            raise ValueError("Password must contain uppercase letter")
        if not any(c.islower() for c in v):
            raise ValueError("Password must contain lowercase letter")
        if not any(c.isdigit() for c in v):
            raise ValueError("Password must contain digit")
        return v

Model Validators

from pydantic import model_validator

class DateRangeRequest(BaseModel):
    start_date: datetime
    end_date: datetime

    @model_validator(mode="after")
    def validate_date_range(self) -> "DateRangeRequest":
        """Ensure end_date is after start_date."""
        if self.end_date <= self.start_date:
            raise ValueError("end_date must be after start_date")
        return self

Type Coercion

Pydantic automatically converts types when possible:

# Input: {"age": "25", "active": "true"}
class User(BaseModel):
    age: int        # "25" → 25 (string to int)
    active: bool    # "true" → True (string to bool)

# But fails on invalid data:
# Input: {"age": "invalid"}
# Raises: ValidationError

OpenAPI Integration

Automatic Documentation

Schemas automatically generate OpenAPI (Swagger) documentation:

class LoginRequest(BaseModel):
    """Request to log in to an existing account."""

    email: EmailStr = Field(..., description="User's email address")
    password: str = Field(..., description="User's password")

    model_config = {
        "json_schema_extra": {
            "example": {
                "email": "john@example.com",
                "password": "SecurePass123!"
            }
        }
    }

Generates:

  • Field names and types
  • Field descriptions
  • Required vs optional
  • Validation constraints
  • Example values
  • Nested object structure

Viewing Documentation

  1. Swagger UI: http://localhost:8000/docs
  2. ReDoc: http://localhost:8000/redoc

Response Model Declaration

from fastapi import APIRouter
from src.schemas.auth import LoginRequest, LoginResponse

router = APIRouter()

@router.post(
    "/login",
    response_model=LoginResponse,  # Declares response schema
    summary="User Login",
    description="Authenticate user and return JWT tokens"
)
async def login(request: LoginRequest):
    # FastAPI automatically:
    # 1. Validates request against LoginRequest
    # 2. Documents endpoint with both schemas
    # 3. Serializes response using LoginResponse
    # 4. Validates response matches schema (in dev)
    pass

Best Practices

1. Comprehensive Documentation

Always include:

  • Class docstring explaining purpose
  • Field descriptions
  • Example data
  • Validation rules
class RegisterRequest(BaseModel):
    """Request to register a new user account.

    Validates email format, password strength, and required fields.
    Email must be unique in the system.
    """

    email: EmailStr = Field(..., description="User's email address")
    password: str = Field(
        ...,
        description="Password (min 8 chars, mixed case, digit, special char)",
        min_length=8,
        max_length=128
    )

    model_config = {
        "json_schema_extra": {
            "example": {
                "email": "john@example.com",
                "password": "SecurePass123!",
                "name": "John Doe"
            }
        }
    }

2. Consistent Naming

# Request schemas
*Request       # LoginRequest, RegisterRequest
*Params        # PaginationParams, FilterParams

# Response schemas
*Response      # UserResponse, TokenResponse
*Info          # ProviderTypeInfo (metadata)

# Lists
List[*]        # List[UserResponse], List[ProviderTypeInfo]

3. Field Ordering

Logical order:

  1. Required fields first
  2. Optional fields after
  3. Grouped by category
  4. Most important first
class UserResponse(BaseModel):
    # Identity (required, most important)
    id: UUID
    email: str

    # Profile (required)
    name: str

    # Status (required)
    email_verified: bool
    is_active: bool

    # Metadata (optional)
    created_at: datetime
    last_login_at: Optional[datetime]

4. Validation Before Database

Always validate in schemas first:

# ❌ BAD: Validation in service layer
async def register_user(email: str, password: str):
    if len(password) < 8:
        raise ValueError("Password too short")
    # Database logic...

# ✅ GOOD: Validation in schema
class RegisterRequest(BaseModel):
    password: str = Field(min_length=8)

async def register_user(request: RegisterRequest):
    # Already validated, safe to use
    # Database logic...

5. Never Expose Sensitive Data

# ❌ BAD: Exposes password hash
class UserResponse(BaseModel):
    email: str
    password_hash: str  # NEVER DO THIS

# ✅ GOOD: Only safe data
class UserResponse(BaseModel):
    email: str
    # No password_hash field

6. Use Type Hints Everywhere

from typing import List, Optional
from uuid import UUID

# ✅ Clear type hints
async def get_user(user_id: UUID) -> UserResponse:
    pass

async def list_users() -> List[UserResponse]:
    pass

async def find_user(email: str) -> Optional[UserResponse]:
    pass

7. Separate DTOs from Database Models

Don't mix concerns:

# Database model (SQLModel)
class User(SQLModel, table=True):
    id: UUID
    email: str
    password_hash: str  # Internal field
    # ... database-specific fields

# API schema (Pydantic)
class UserResponse(BaseModel):
    id: UUID
    email: str
    # NO password_hash
    # ... API-specific fields

8. Version Your Schemas

For breaking changes:

# src/schemas/auth_v1.py
class LoginRequestV1(BaseModel):
    username: str
    password: str

# src/schemas/auth_v2.py
class LoginRequestV2(BaseModel):
    email: EmailStr  # Breaking change
    password: str

Examples & Usage

Example 1: User Registration Flow

Schema Definition:

# src/schemas/auth.py
class RegisterRequest(BaseModel):
    email: EmailStr
    password: str = Field(min_length=8)
    name: str

class MessageResponse(BaseModel):
    message: str

Endpoint Implementation:

# src/api/v1/auth_jwt.py
from src.schemas.auth import RegisterRequest, MessageResponse
from src.services.auth_service import AuthService

@router.post("/register", response_model=MessageResponse)
async def register(
    request: RegisterRequest,
    session: AsyncSession = Depends(get_session)
):
    auth_service = AuthService(session)
    user, token = await auth_service.register_user(
        email=request.email,
        password=request.password,
        name=request.name
    )

    # Send verification email
    await send_verification_email(user.email, token)

    return MessageResponse(
        message="Registration successful. Please check your email."
    )

Client Usage:

curl -X POST http://localhost:8000/api/v1/auth/register \
  -H "Content-Type: application/json" \
  -d '{
    "email": "john@example.com",
    "password": "SecurePass123!",
    "name": "John Doe"
  }'

Example 2: Login with Nested Response

Schema Definition:

class LoginRequest(BaseModel):
    email: EmailStr
    password: str

class UserResponse(BaseModel):
    id: UUID
    email: str
    name: str
    email_verified: bool

class LoginResponse(BaseModel):
    access_token: str
    refresh_token: str
    token_type: str = "bearer"
    expires_in: int = 1800
    user: UserResponse  # Nested

Endpoint Implementation:

@router.post("/login", response_model=LoginResponse)
async def login(
    request: LoginRequest,
    session: AsyncSession = Depends(get_session)
):
    auth_service = AuthService(session)

    # Authenticate
    user = await auth_service.authenticate_user(
        request.email, 
        request.password
    )

    if not user:
        raise HTTPException(401, "Invalid credentials")

    # Generate tokens
    access_token = create_access_token(user.id, user.email)
    refresh_token = await create_refresh_token(user.id)

    return LoginResponse(
        access_token=access_token,
        refresh_token=refresh_token,
        user=UserResponse(
            id=user.id,
            email=user.email,
            name=user.name,
            email_verified=user.email_verified
        )
    )

Example 3: PATCH with Optional Fields

Schema Definition:

class UpdateUserRequest(BaseModel):
    name: Optional[str] = None
    email: Optional[EmailStr] = None

    @field_validator("name")
    @classmethod
    def validate_name(cls, v: Optional[str]) -> Optional[str]:
        if v is not None and not v.strip():
            raise ValueError("Name cannot be empty")
        return v.strip() if v else v

Endpoint Implementation:

@router.patch("/me", response_model=UserResponse)
async def update_profile(
    request: UpdateUserRequest,
    current_user: User = Depends(get_current_user),
    session: AsyncSession = Depends(get_session)
):
    # Only update provided fields
    if request.name is not None:
        current_user.name = request.name

    if request.email is not None:
        current_user.email = request.email
        current_user.email_verified = False

    await session.commit()
    await session.refresh(current_user)

    return UserResponse.from_orm(current_user)

Security Considerations

Data Validation at API Boundary

  • Request Validation: All incoming data validated before reaching business logic
  • Type Safety: Pydantic ensures type correctness and prevents type confusion attacks
  • Input Sanitization: Field constraints prevent injection attacks (SQL, NoSQL, command injection)

Sensitive Data Protection

  • Response Filtering: Never expose password hashes, tokens, or internal IDs in response schemas
  • Field Exclusion: Use separate response schemas that explicitly exclude sensitive fields
  • Example Validation: Ensure example data in schemas doesn't contain real credentials

Validation Security

  • Length Limits: All string fields have max_length constraints to prevent DOS attacks
  • Email Validation: Use EmailStr type to prevent email header injection
  • Custom Validators: Implement password complexity, allowed characters, format validation

Performance Considerations

Validation Overhead

  • Sub-millisecond Performance: Pydantic v2 validation is highly optimized (Rust core)
  • Lazy Validation: Validation only occurs when data is accessed
  • Schema Caching: Pydantic caches schema compilation for reuse

Response Serialization

  • Efficient JSON Serialization: FastAPI uses optimized JSON serialization
  • Field Exclusion: Use response_model_exclude for large objects when needed
  • Pagination: Always paginate list responses to prevent large payload overhead

Schema Compilation

  • Startup Overhead: Schemas compiled at application startup (one-time cost)
  • Reusability: Share common schemas across endpoints to reduce compilation overhead

Testing Strategy

Unit Testing Schemas

# tests/unit/schemas/test_auth_schemas.py
import pytest
from pydantic import ValidationError
from src.schemas.auth import RegisterRequest, LoginRequest

class TestRegisterRequest:
    """Test registration request validation."""

    def test_valid_registration(self):
        """Test valid registration data."""
        data = {
            "email": "test@example.com",
            "password": "SecurePass123!",
            "name": "Test User"
        }
        request = RegisterRequest(**data)
        assert request.email == "test@example.com"
        assert request.name == "Test User"

    def test_invalid_email(self):
        """Test invalid email format."""
        with pytest.raises(ValidationError) as exc:
            RegisterRequest(
                email="invalid-email",
                password="SecurePass123!",
                name="Test"
            )
        assert "email" in str(exc.value)

    def test_short_password(self):
        """Test password too short."""
        with pytest.raises(ValidationError) as exc:
            RegisterRequest(
                email="test@example.com",
                password="short",
                name="Test"
            )
        assert "min_length" in str(exc.value).lower()

    def test_empty_name(self):
        """Test empty name rejection."""
        with pytest.raises(ValidationError) as exc:
            RegisterRequest(
                email="test@example.com",
                password="SecurePass123!",
                name=""
            )
        assert "name" in str(exc.value)

Integration Testing with Endpoints

# tests/api/test_auth_jwt_endpoints.py
from fastapi.testclient import TestClient

def test_register_success(client: TestClient):
    """Test successful registration."""
    response = client.post("/api/v1/auth/register", json={
        "email": "newuser@example.com",
        "password": "SecurePass123!",
        "name": "New User"
    })

    assert response.status_code == 200
    data = response.json()
    assert "message" in data
    assert "successful" in data["message"].lower()

def test_register_invalid_email(client: TestClient):
    """Test registration with invalid email."""
    response = client.post("/api/v1/auth/register", json={
        "email": "invalid-email",
        "password": "SecurePass123!",
        "name": "Test"
    })

    assert response.status_code == 422  # Validation error
    data = response.json()
    assert "email" in str(data).lower()

Migration Guide

Migrating Inline Schemas to Separate Files

Step 1: Extract Schema:

Before:

# src/api/v1/providers.py
class ProviderTypeInfo(BaseModel):
    key: str
    name: str

@router.get("/available")
async def get_providers() -> List[ProviderTypeInfo]:
    pass

After:

# src/schemas/provider.py
class ProviderTypeInfo(BaseModel):
    """Available provider type information."""
    key: str = Field(..., description="Provider identifier")
    name: str = Field(..., description="Display name")

# src/api/v1/providers.py
from src.schemas.provider import ProviderTypeInfo

@router.get("/available")
async def get_providers() -> List[ProviderTypeInfo]:
    pass

Step 2: Update Imports:

Find all usages:

grep -r "ProviderTypeInfo" src/

Update imports:

# Old
from src.api.v1.providers import ProviderTypeInfo

# New
from src.schemas.provider import ProviderTypeInfo

Step 3: Test:

# Run tests
make test

# Check API docs still work
open http://localhost:8000/docs

Future Enhancements

Planned Improvements

  • Schema Versioning Strategy: Implement systematic API versioning (v1, v2) for breaking changes
  • Advanced Validation: Add cross-field validation patterns for complex business rules
  • Performance Optimization: Profile and optimize validation for high-throughput endpoints
  • Documentation Enhancement: Auto-generate client SDKs from OpenAPI schemas
  • Testing Utilities: Create schema factories and fixtures for easier test data generation

Known Limitations

  • Manual Schema Updates: Schema changes require manual updates to maintain consistency
  • Limited Datetime Validation: No built-in validation for business-specific date rules
  • Complex Nested Validation: Deeply nested schemas can be challenging to validate comprehensively

References

External Resources

  • Pydantic Documentation: https://docs.pydantic.dev/
  • FastAPI Documentation: https://fastapi.tiangolo.com/
  • OpenAPI Specification: https://swagger.io/specification/

Project Files

  • src/schemas/ - All Pydantic schema definitions
  • tests/unit/schemas/ - Unit tests for schema validation
  • tests/api/ - API endpoint integration tests

Document Information

Template: architecture-template.md Created: 2025-10-04 Last Updated: 2025-10-16